viernes, 14 de junio de 2024

BORGES, EL INFINITO Y EL AJEDREZ

 


Los lectores de Borges conocen su afición por el tema del infinito, asunto que manejaba con pericia a la hora de redactar sus  espectaculares ficciones o sus asombrosos ensayos. El argentino conocía la matemática del infinito en su parte definitoria y no le eran ajenas las teorías primarias de Georg Cantor.
 


 

Menos frecuente en su literatura es el tema del ajedrez, aunque la palabra se consigue en la obra en varias oportunidades. El ajedrez da para aproximarse al infinito por diversas vías, una de ellas la de los grandes números como, por ejemplo, la cantidad de granos de trigo que supuestamente pidió el inventor del juego a un rey imprudente y poco dado a analizar.

Pero hay un poema de Borges que nos enfrenta al infinito desde una atalaya sorprendente: la de ignorar el argumento aristotélico-tomista del primer motor. Para algunas mentalidades religiosas es herético. El poema en cuestión se llama precisamente "Ajedrez". Consiste en dos hermosos sonetos; lo comparto:


I
En su grave rincón, los jugadores/
rigen las lentas piezas. El tablero/
los demora hasta el alba en su severo/
ámbito en que se odian dos colores.

Adentro irradian mágicos rigores/
las formas: torre homérica, ligero/
caballo, armada reina, rey postrero,/
oblicuo alfil y peones agresores.

Cuando los jugadores se hayan ido,/
cuando el tiempo los haya consumido,/
ciertamente no habrá cesado el rito.

En el Oriente se encendió esta guerra/
cuyo anfiteatro es hoy toda la Tierra./
Como el otro, este juego es infinito.

II
Tenue rey, sesgo alfil, encarnizada/
reina, torre directa y peón ladino/
sobre lo negro y blanco del camino/
buscan y libran su batalla armada.

No saben que la mano señalada/
del jugador gobierna su destino,/
no saben que un rigor adamantino/
sujeta su albedrío y su jornada.

También el jugador es prisionero/
(la sentencia es de Omar) de otro tablero/
de negras noches y de blancos días.

Dios mueve al jugador, y éste, la pieza./
¿Qué Dios detrás de Dios la trama empieza/
de polvo y tiempo y sueño y agonía?

viernes, 29 de septiembre de 2023

UN VIAJE AL INFINITO



El documental "Un viaje al infinito", estrenado en Netflix el 26/09 próximo pasado, está impelable. Un abanico de notables matemáticos, físicos, astrónomos y filósofos nos muestran que la realidad es más fantástica que la fantasía más loca que podamos imaginar.
 

 
Gente tan eminente como Steven Strogatz, Carlo Rovelli, Brian Greene y otros brillantes científicos y filósofos se pasean por temas como el hotel de Hilbert y los agujeros negros, en un paseo en el que, lejos de mostrar la seguridad del sabio, manifiestan su propia perplejidad ante un fenómeno absolutamente abrumador.
 

Con total humildad y una buena dosis de humor, esta pléyade de pensadores le dice al espectador que no se preocupe por no comprender, que ellos están igual que él, aunque tengan la posibilidad de entender la matemática que soporta a las ideas.
 
Se los digo: está impelable. No se lo pierdan.
 

 

viernes, 2 de diciembre de 2022

TRUQUITOS, MAÑAS Y MALAS COSTUMBRES EN EL APRENDIZAJE DE LA MATEMÁTICA


Dentro de los tantos lujos que se pueden dar los reyes está el de tener los mejores preceptores. No obstante, tengo para mí que la mayor parte de las veces este es un lujo inútil. Se me viene a la mente Ptolomeo Sóter I quien tenía como preceptor, nada más y nada menos, que al sabio Euclides autor, entre otras obras, de los Elementos, monumental tratado en trece volúmenes que contiene (salvo el tema de las cónicas) todo el saber matemático acumulado en su época.

El asunto es que el anecdotario (que no siempre es fiel a la verdad) recoge un incidente en el que el soberano, posiblemente cansado de una explicación algo fatigosa de un largo teorema, inquirió al sabio acerca de una manera más corta de obtener el resultado. La respuesta que recibió debe haber herido su real orgullo, pues el geómetra le espetó: "No hay camino de reyes para la geometría". De ser cierta la anécdota, se convierte Ptolomeo Sóter en el antecedente más notable de ese espécimen de aprendiz que, sin poder ni querer entender la extraordinaria potencia formativa del pensamiento matemático, puja por convertirlo en un baúl de trucos y mañas, más propio de un prestidigitador que de alguien interesado realmente en su formación. Todo profesor de matemática ha vivido la experiencia del estudiante que le solicita: "Profe, ¿usted no me puede dar un truquito para hacer eso más rápido?".

Lo peor es que hay muchos profes que reparten trucos a diestra y siniestra; son la adoración de estos estudiantes. Algunos hasta escriben libros y, aunque no lo dicen expresamente, su estrategia de enseñanza se sustenta sobre el pensamiento fijo y absolutamente esquemático; los problemas de tales libros parecen sacados de un molde, pero vienen a montones para que el estudiante repita la rutina hasta el cansancio y asuma que su repetición es conocimiento adquirido. Este tipo de libro se ha hecho popular por cierto tipo de profesor que, ante cualquier estudiante inquisitivo lo invita -sin dejo alguno de vergüenza- a que cumpla su rutina y no se "complique" la vida. Hasta ahora no he mencionado la ingente cantidad de videos YouTube o TikTok para tal o cual truco, desde multiplicar dos números hasta calcular integrales.

En la página 30 del tomo 4 de la Enciclopedia Sigma de James Newman, conseguimos esta cita de Alfred North Whitehead: 
 
  
Que deberíamos cultivar el hábito de pensar en lo que estamos haciendo, es una máxima profundamente errónea repetida en todos los textos y por las personas más eminentes cuando hacen discursos. La verdad es precisamente lo contrario. La civilización avanza ampliando el número de operaciones importantes que podemos realizar sin pensar en ellas
 
 
 
Es posible que el profe amante del truquito y la repetición se sienta representado por el pensamiento del notable inglés. Pero esa identificación no es otra cosa que su incapacidad de razonamiento, producto de tanta búsqueda de trucos y atajos mentales. A ver, tratemos de poner las cosas en su sitio.

A cualquier lector de este artículo que se le haga la pregunta "¿4x3?" contestará 12 sin pensar. Un niño de tercer o cuarto grado, quizás mirando el cielo con la cabeza ladeada, apartará cuatro de sus dedos y los moverá tres veces para realizar la enumeración. El adulto que le increpe "¡Niño: no sabes multiplicar!" está profundamente equivocado; el niño está demostrando su comprensión del concepto: la multiplicación es una suma repetida. Pero si necesita el concepto para obtener el resultado es que aún no ha repetido la experiencia lo suficiente para convertirla en un acto mecánico, imprescindible para su avance hacia la adquisición de conceptos posteriores. Lo que nos plantea Whitehead es que todo el conocimiento humano consiste en la repetición continua, durante toda la vida, de estos actos de mecanización.

Pero cabe una pregunta: ¿tiene sentido la adquisición de los mecanismos sin la comprensión previa de los conceptos? Pareciera que no, pero ¿cuánta de nuestra educación básica está sostenida sobre este hilo tan delgado y frágil? Voy a un ejemplo, cuando se nos enseña a restar podemos conseguir una situación como esta:


Me propongo parafrasear el procedimiento tal como lo recuerdo: 7-9 no se puede (sic), por eso tomo prestado 1 del 0 (de quien ya me habían dicho que era nada) y el 7 queda 17 (no 8: 17), entonces 17-9=8; el 0 queda entonces 9 (¡milagro de Dios: no solo Cristo hizo aparecer panes y peces de la nada!), por lo cual 9-4=5. El 0 siguiente también queda en 9 (¡otro milagro!) y entonces 9-5=4; finalmente el 2 se convierte en 1 y se baja al resultado.

¿Algo más mágico que eso? Lo dudo. ¿Y más truculento? Mayor duda. Pero así hemos avanzado y creo que no hay mejor explicación que esta para la enorme cantidad de personas que se refugian tan rápido en las calculadoras. ¿Cuántas personas saben que en ese procedimento (absolutamente válido, más allá de su absurdo fraseo) está implícita la estructura del sistema posicional decimal?  No puedo alargar el artículo con los detalles pero, en realidad, hemos sometido el minuendo a una tranformación que convierte la resta del esquema original


a este otro esquema


en el cual, debemos observar que no cambiamos el valor del minuendo, sino la manera de escribirlo, para poder disponer del 1 que nos hace falta para hacer 17, porque en realidad no es un 1 sino una decena.

Comenzando por situaciones como esa llegamos a otras más deformantes. Me ha tocado conocer profesionales que necesitan de una calculadora para obtener un 10% de alguna cantidad, así como también la ha necesitado cierta encargada de caja de un negocio para calcular el 20% de 100. Indicaciones claras de la pérdida del concepto de proporción. En este sentido he visto críticos muy duros del procedimiento de la regla de tres. Pero no puedo entender cómo es que hacemos recaer la culpa en el procedimiento que -como cualquier otro procedimiento de cálculo- es mecánico y debe servir, tal como solicita Whitehead, para obtener resultados sin pensar en los pasos que me lleven a ellos.

Pero ¿qué es la regla de tres? En principio puedo responder que es un problema muy viejo pues se se le consigue en los Elementos de Euclides y se llamaba problema de la cuarta proporcional. En esencia consiste en plantear una proporción de cuatro términos en la que desconocemos uno: precisamente es regla de tres porque conocemos tres. Se usa para resolver problemas del tipo "si 5 naranjas me cuestan 8 bolívares, ¿cuanto tendría que pagar por 11 naranjas?", en el entendido de que se mantienen los precios unitarios de la naranja para cualquier cantidad.

Estrictamente, la proporción tendría que plantearse de la siguiente forma

donde 5, 8 y 11 son los números conocidos y x es el número faltante en la proporción. En términos precisos se trata de una sencilla ecuación de primer grado pero, como toca enseñarlo en cuarto o quinto grado de primaria parece desaconsejable usar la palabra ecuación y entonces, en vez de hacer el planteamiento correcto se prefiere formular el siguiente esquema

pero creo que una vez que el maestro presenta este esquema, olvida el concepto de proporción y se concentra en el esquema mismo, como una construcción vacía que será un molde fijo para enunciados similares: el mismo inconveniente del profe que escribió su libro de problemas repetidos y repetitivos. De esta manera, la amplitud del concepto de proporción se disuelve por completo y el aprendiz pierde de vista casos particulares importantes como el de porcentaje, por ejemplo. Las víctimas de este procedimiento llegan a adultos pensando que un porcentaje es una tecla de la calculadora y ni por asomo calcularían un descuento de 20% sobre 60 escribiendo la regla de tres

y mucho menos multiplicando por 8 y ajustando la escala. Ambos son procedimientos conceptuales, posibles solo si se entiende lo que significa la frase descuento de 20% sobre 60.

Resumo mi punto de vista: el problema no está en los procedimientos si estos tienen una base teórica que permita usarlos desde un lenguaje metafórico. El usuario que le quita un 1 a un 0 para dejarlo en 9 debe reconocer la estructura del sistema decimal que permite el fraseo. Es un caso similar al estudiante (o profesor) que pasa al lado izquierdo en suma un término que resta del lado derecho de una igualdad. Todos sabemos que, estrictamente, lo que se está haciendo es sumar el mismo término en ambos lados y en uno de ellos se obtiene una suma cero. Pero si tuviéramos que repetir este último fraseo cada vez que debamos resolver una ecuación entonces estaríamos contradiciendo la sabia máxima que nos dejó Whitehead.

Enseñar procedimientos que no vengan acompañados de su justificación teórica no es otra cosa que enseñar trucos, mañas y malas costumbres. Convertir la enseñanza y el aprendizaje de la matemática en recolección y búsqueda de estos trucos es la mejor manera de ganarle más adversarios (de los tantos que ya tiene) a un conocimiento que -aparte de entretenido y motivador- es una clave cultural imprescindible para la época que vivimos.

sábado, 5 de noviembre de 2022

UN POLVO DESAFORTUNADO, PERO UNA PELÍCULA AFORTUNADA

 


Confieso que soy muy ambiguo en mi relación con la red social Twitter. Todos los días la abro por lo menos una vez, pero no son pocas las oportunidades en que he tenido unas ganas inmensas de cerrar mi cuenta y olvidarme de eso. Un fenómeno que no puedo pasar por alto es que hay algunos tuiteros de una mediocridad excepcional (¿oxímoron?) que arrastran unos números casi millonarios de seguidores. Pero creo que Twitter abre una ventana hacia ciertos aspectos de lo humano que me parecen escabrosos hasta en su carácter de inefabilidad, a menos que tal carácter inefable no sea otra cosa que mi incapacidad de descripción de un fenómeno sociológico harto complejo.

En estos días en que se inventan tantos neologismos (muchos de ellos francamente eufemismos o barbarismos) se me antoja proponer la palabra catosavonismo, como una forma abreviada -casi apocopada- de la conjunción de Catón y Savonarola que muestran algunos cuantos tuiteros. Los catosavonistas expresan sus convicciones morales exentos de dudas; para ellos escribir en Twitter es equivalente a escribir un código en piedra. Muchos muestran en sus epígrafes de presentación sus profundas convicciones religiosas, pero manifiestan una exultante alegría ante la muerte violenta de un delincuente o de un líder político que detestan. Si estos hechos vienen acompañados de un video escabroso mucho mejor para su "productividad" de comentaristas.

Todas estas reflexiones se me ocurrieron luego de ver la película rumana Sexo desafortunado o porno loco (Babardeală cu buclucsau porno balamuc, en su idioma original, también nombrada como Un polvo desafortunado o porno loco) del año 2021 que, contradictoriamente, no nombra a Twitter en ningún momento. La cinta -dirigida y escrita por Radi Jude y estelarizada por Katia Pascariu- me trajo el recuerdo de un incidente de hace veinte años, en el que fueron protagonistas una bella actriz y un muy cotizado actor de la TV y el cine nacional. En ese entonces todavía estaba yo en aulas como profesor y me tocó conversar del tema en muchas oportunidades, ante la explosión de opiniones que consideré chocantes, pero meritorias de una sana discusión. Ya se venían incubando los polluelos opinantes tuiteros.

La película, excelente, tiene una estructura narrativa deliciosa, separada en tres actos. El primero -un paseo turístico por Bucarest, que nos muestra tanto lo bello como lo feo de la ciudad- nos presenta el problema que genera el drama de la protagonista. El segundo -con textura documental- nos da una serie de definiciones (en estricto orden alfabético) de los términos político-sociológicos  que parecieran definir este primer cuarto del siglo XXI; la mordacidad de algunas definiciones arranca carcajadas, pero el profundo humor negro que las envuelve nos deja cierto amargor; provoca anotar algunas de las citas que aparecen en este acto para preservarlas. El tercer acto fue el que me recordó a Twitter pues una caterva catosavonista, sin preparación de ninguna especie para la realización de un juicio, procede al mismo contra una persona que, con sus escasas fuerzas, debe responder a una maquinaria que está dispuesta a triturarla moralmente. No les comento nada del final porque es delicioso.

La mordacidad crítica del filme no deja títere con cabeza en ningún aspecto social. La iglesia y el ejército reciben lo suyo de manera despiada, pero la conducta ciudadana (el ambiente es de plena pandemia: los personajes andan con tapaboca y orden de distancia social) tampoco es dulcificada: algunas infracciones y abusos de tránsito me hicieron preguntarme si estaba viendo una película rodada en Bucarest o en Barquisimeto. Imagino que esto podría, más bien, envalentonar a nuestros tantos abusadores vernáculos.

Hay en la película unas cuantas escenas de sexo explícito tipo porno duro. Y lo comento por dos razones: una para correr a cualquier moralista que se haga la cruz ante la noticia. La otra es porque algunos de los que se persignan no pueden evitar la tentación de verla, una vez que lo saben. Eso sí, nadie que la vea quedará indiferente.
 

martes, 5 de julio de 2022

LA MEDALLA FIELDS 2022

 


Este año 2022 es el año del mundial de fútbol, evento de cuyo conocimiento escapan muy pocos seres humanos. Pero cada año de mundial de fútbol ocurre un evento cuya implicación en nuestra vida es inconmensurable y, posiblemente, inefable, pero cuyo conocimiento corre suerte inversa al deportivo. Se trata del conferimiento de la medalla Fields, la distinción más alta que puede recibir un matemático en su vida por la importancia de su obra en la materia.

Al igual que en 2014, este año en ese cuadro de honor está una mujer: es la segunda vez en la historia que sucede.

A continuación les muestro mi traducción de la página de la Unión Matemática Internacional (UMI o IMU, si la prefieren en inglés) con el resumen de la obra de estos pensadores que los hizo acrredores a tan alta distinción. Las fotos también fueron obtenidas de la misma página.

*************

Maryna Viazovska (Ucraniana, 1984)

Por la demostración de que el reticulado E8 es el empaquetamiento más denso de esferas idénticas en 8 dimensiones, además de contribuciones a problemas extremos relacionados y problemas de interpolación en análisis de Fourier.

June Huh (Coreano-Estadounidense, 1983)

Por llevar las ideas de la teoría de Hodge a la combinatoria, la prueba de la conjetura de Dowling-Wilson para reticulados geométricos, la prueba de la conjetura de Heron-Rota-Welsh para matroides, el desarrollo de la teoría de polinomios lorentzianos y la prueba de la conjetura fuerte de Mason.

James Maynard (Británico 1987)

Por contribuciones a la teoría analítica de números, que han conducido a grandes avances en la comprensión de la estructura de los números primos y a la aproximación diofántica.

Hugo Duminil-Copin (Francés, 1985)

Por haber resuelto problemas de larga data en la teoría probabilística de transiciones de fase en física estadíatica, especialmente en dimensiones tres y cuatro.

*************

Observen las fechas de nacimiento: todos menores de 40 años. Es un requisito para aspirar a ese premio.


(Si quieren algo más de detalle sobre la medalla Fields, pueden consultar un artículo al respecto en este mismo blog.)

lunes, 20 de junio de 2022

BUENA SUERTE, LEO GRANDE

 En la que debe ser la más digna y hermosa actuación de su digna y hermosa carrera, Emma Thompson nos regala una faceta actoral absolutamente bella, desconocida, honesta y espectacular en "Buena suerte, Leo Grande", una película donde todos los mitos comerciales sobre la sexualidad y la belleza física van a parar al albañal de donde salieron.

Pero la inglesa no está sola pues -haciéndole par en una actuación que, sin ser del oficio, considero harto difícil- conseguimos en el film al irlandés Daryl McCormack quien, sin llegar aun a los treinta años, dispuso de la valentía de hacer, con una actriz a la que seguro respeta y admira, unas escenas que, por su atrevimiento e iconoclastia requieren de mucho coraje. Pero no voy a describir con burdas palabras lo que, por su belleza, fue hecho para ser visto y no descrito.

La economía de recursos materiales de la película es asombrosa, puesto que su estructura teatral se apoya sobre la base de los inteligentes diálogos de los dos personajes principales, casi que únicos, porque los secundarios están bastante reducidos tanto en el tiempo como en el impacto y no pasan de tres. Esos diálogos que acabo de comentar llevan al espectador con mucha frecuencia a la risa y, en momentos cumbres, a las lágrimas. Pero también hay en la película escenas sin palabras que descolocan completamente el corazón: hay que prepararse para un final absolutamente indescriptible y, de seguro, inesperado.

Yo no sé si existe eso que se llama toque femenino o si es un invento o eufemismo más de la condescendencia social, que quiere elaborar méritos para compensar la segregación de la que han sido víctima las mujeres durante buena parte de nuestro atrás histórico. Pero no deja de ser un detallazo que quien dirige esta película se llame Sophie Hyde.

En lo que sigue la película va a sonar. Tengan la seguridad de que sí. Y, con todo y su salida temprana en este año, va a estar presente en muchas premiaciones del que viene. Luego hablamos. Mientras tanto deberíamos pensar en lo de incluir el placer como materia obligatoria en las escuelas.


miércoles, 8 de diciembre de 2021

"EL ÚLTIMO DUELO" DE RIDLEY SCOTT

 


    En todo juicio sobre violación sexual un punto muy preponderante para jueces, jurados, abogados y -los nunca faltantes- espectadores morbosos es la posible colaboración de la mujer en el acto de violación. Casi podría decirse que todo juicio de este delito deriva más en buscar las conductas femeninas supuestamente generadoras del mismo que de analizar la fechoría como tal.

    Si alguna película retrató esta situación con lujo de detalles fue aquella inolvidable Acusados de Jonathan Kaplan, en la que una excelente Jodie Foster (ganadora del Óscar y del Globo de Oro, por su actuación en ella) pasa de víctima a victimaria, por su "provocación" de la violencia.

    El último duelo, la más reciente película de Ridley Scott recoge el tema nuevamente, pero esta vez con la escena situada en la Edad Media, en la segunda mitad del siglo XIV. Puede ser que con esta película, quiera decirnos Ridley Scott que no es mucho lo que hemos avanzado en la materia. Salvo quizás las terribles penas a las que se arriesgaba la mujer, ella siempre ha llevado el hándicap de la sospecha de provocación. Y, lamentablemente, podrían ser sus propias congéneres femeninas quienes dejen las dudas más profundas al respecto.

    Con un guion interesante -de Matt Damon, Ben Affleck y Nicole Holofcener- que nos cuenta la historia principal tres veces, desde los puntos de vista de tres protagonistas distintos, al estilo de Kurosawa, creo reconocer también en la película la influencia de Sam Peckinpah, sobre todo en la escena de la violación, la cual me hizo recordar la de Los perros de paja que, por su ambigüedad,  tantos calificativos de misoginia dejó caer sobre el californiano. Por supuesto que Scott no los recibirá, puesto que manejó muy hábilmente cada punto de vista.

    La puesta en escena es impecable, los escenarios magníficos y las actuaciones hacen un juego extraordinario con el todo, en el que el enfrentamiento de tres hombres (dos contra uno) producen un suspenso permanente en el espectador. Un cínico conde Pierre d'Alençon (Ben Affleck), descarga toda su repulsión sobre el caballero Jean de Carrouges (Matt Damon), apoyado en el arribista Jaques Le Gris (Adam Driver), quien inicialmente es amigo del segundo, para pronto traicionar la lealtad que le debía. La presencia de Marguerite (Judie Comer) endulza la pantalla ante tanta violencia con un rostro inmensamente bello y luminoso.

    Parece que lo mejor de las productoras quedó para el fin de año. Disfrútenla.